skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Xingkang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Carboxylic acid functionalized cellulose nanocrystals have been obtained from biomass and evaluated as aqueous, environmentally sustainable alternatives to conventional polyvinylidene difluoride binders for cathodes of lithium-ion batteries. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  3. Solid-state lithium batteries (SSLBs) are promising candidates for replacing traditional liquid-based Li-ion batteries and revolutionizing battery systems for electric vehicles and portable devices. However, longstanding issues such as form factors, interfacial contact resistance, balance between ion conductivity and mechanical strength, and manufacturing processability limit their applications. In this review we present how advanced printing technologies can help to mitigate typical problems in main components of SSLBs and improve device performance. We first introduce the common printing techniques for energy storage devices, then focus on the issues and corresponding printing strategies for anodes, cathodes, and solid-state electrolytes to guide the construction of energy-dense, free-form SSLBs. The features and effects of the printed structures are emphasized, as well. We conclude by discussing the problems associated with printing technologies and the potential research directions for printed solid-state batteries. 
    more » « less